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Introduction 
 
The numerical analysis of large arrays is a complex problem.  There are several techniques 
currently under development in this area.  One such technique is the FAIM (Faster Adaptive 
Integral Method).  This method uses a modification of the standard AIM approach [1] which takes 
into account the reusability properties of matrices that arise from identical array elements.   
 
If the array consists of planar conducting bodies, the array elements are meshed using standard 
subdomain basis functions, such as the RWG basis.  These bases are then projected onto a regular 
grid of interpolating polynomials.  This grid can then be used in a 2D or 3D FFT to accelerate the 
matrix-vector product used in an iterative solver [2].  The method has been proven to greatly 
reduce solve time by speeding the matrix-vector product computation. The FAIM approach also 
reduces fill time and memory requirements, since only the near element interactions need to be 
calculated exactly. 
 
The present work extends FAIM by modifying it to allow for layered material Green’s Functions 
and dielectrics.  In addition, a preconditioner is implemented to greatly reduce the number of 
iterations required for a solution.  The general scheme of the FAIM method is reported in [2]; this 
contribution is limited to presenting new results. 
 
Layered Material 

To apply FAIM, the moment matrix for the original discretized EFIE, ( )mn n mZ V′ ′ ⎡ ⎤⎡ ⎤ ⎡ ⎤Ι =⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦
incpp p p , 

is written as [2] 
 

( ) ,mn n mn n mZ Z V′ ′ ′ ′ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤∆ Ι + Ι =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦
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where the block Toeplitz difference matrix mn mn mnZ Z Z′ ′ ′∆ = −pp pp pp  is taken as zero for elements whose 
indices satisfy ′− ≥p p c  and is hence sparse.  Concerning notation, as shown in Fig.1, the array 
is decomposed into blocks of elements with each element denoted by the two-component multi-
index p , with a prime added to distinguish source from observation element locations.  Within 
each block representing an element, the current is expressed in terms of usual basis functions p

n
′Λ . 

The m-indexed test functions are denoted by p
mΛ  (see [2] for more details.) To evaluate the 

matrix/vector product, we note that mn nZ ′ ′⎡ ⎤ ⎡ ⎤∆ Ι⎣ ⎦ ⎣ ⎦
pp p  is quickly computed since mnZ ′∆ pp  is sparse, 

whereas mn nZ ′ ′⎡ ⎤ ⎡ ⎤Ι⎣ ⎦⎣ ⎦
pp p  is of convolutional form and can be evaluated using a 2D FFT as follows:  
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where p and p’ represent the two-index displacements between source and observation cells, 
respectively; m and n index unknowns within the p and p’ cells, respectively; and  , ji  and 

,i j′ ′ denote periodic grid points for the Green’s function evaluations (Fig.1).  ,m jL L< >p
iΛ  is the 

projection of the m th  basis function in the pth array cell onto the Lagrange polynomial 
interpolating the , ji th point.  E

, ,j j ′iG  represents the sampled Green’s electric field dyad, though in 
actuality the field is expressed in mixed potential form.  In free space, the dyad can be expressed 
in terms of a single scalar potential.   Since vector basis functions are used, ,m jL L< >p

iΛ is a 
vector. 
 
For layered material, the far interactions require the computation and storage of the five non-zero 
components of the magnetic vector potential Green’s dyad and two scalar potentials for all 
possible interactions between interpolating points in the z dimension, and all unique discrete 
separations in the transverse dimension.  This increases memory requirements when layered 
material is present, but does not increase the number of FFT’s that need to be performed per 

iteration.   
 
The Green’s function samples 
themselves are only transformed 
once, before any iterations are 
performed.  During each iteration, the 
currents are projected onto the 
interpolating grid as usual.  However, 
once the projections are transformed 
into the spectral domain, more than 
one multiplication per vector 
component is completed, applying 
each of the Green’s function’s dyadic 
terms.  The inverse transform is then 
computed, and the iteration 
completed. Because multiplications in 
the spectral domain are O(N) while 
the transforms themselves are 
O( logN N ), the extra Green’s 
function terms do not greatly slow the 
iteration.   
 
Dielectrics 
 
For dielectric array elements, the 
PMCHWT surface formulation is 
used. The original EFIE equation is 
then replaced by a matrix system of 
the following form:   
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The matrix mnZ ′pp is the EFIE operator and mnY ′pp is its dual, representing the magnetic field due to 
magnetic current sources; mnβ ′pp is the corresponding MFIE operator.  The corresponding matrices 

int
mnZ , int

mnY , and int
mnβ that appear only on diagonal blocks represent the coupling from the interior of 
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Fig. 1. Array cell index definitions and
arbitrary skew lattice vectors. The periodic grid
on which the Green’s function is evaluated and
sampled is shown superimposed on the array
cells. Within an array cell, the Green’s function
is evaluated at 1 2 3r r r× ×  points. 



each dielectric element; they affect only the p p′=  blocks of the near-field terms of the FAIM 
approach comprising blocks such that p p c′− < .   
 
Block Diagonal Preconditioner 
 
When using an iterative solver such as BiCGStab on a very large matrix system, the solution may  
converge very slowly if conditioning is poor.  For this reason, a preconditioner is needed to 
improve the solution time. 
 
A block diagonal preconditioner for an array is a logical and simple choice.  This preconditioner 
consists of the diagonal (self-array cell) terms of the impedance matrix only.  The inverse of this 
matrix is another block-diagonal matrix containing the inverse of the self-array cell blocks pp

mnZ ′⎡ ⎤⎣ ⎦ , 

with p p′= .  Physically, this preconditioner solves the original problem as if there were no 
interaction between array cells.  For array designs with little mutual coupling this is a very good 
assumption and the iteration count can be reduced by orders of magnitude.  For arrays with strong 
coupling some deterioration in performance is to be expected.  
 
Because the self block is already being filled exactly for use in the correction calculation, this 
preconditioner does not require additional fill time.  The inversion of a self block is also negligible 
since the number of unknowns involved is small compared to the overall array size.  After the 
matrix-vector product is computed during each iteration, the resulting vector is multiplied by the 
preconditioner, adding an O(N) computation to the total time for the matrix vector product. 
 
Results 
 
Three test arrays were simulated with different structures and the results of the FAIM method both 
with and without preconditioning were compared to an “exact” MoM solution of these arrays.  The 
“exact” solution does not use interpolation or fast multiplication, but does utilize the Toeplitz 
nature of the matrices to speed fill time and storage.  
 
The first two arrays consisted of 20 20× elements, had a lattice spacing of a half wavelength in 
both directions, and were simulated at 300 MHz.  The first test case was a dipole fed by a delta 
gap source at its center.  The dipole contained 23 unknowns and was 39 [cm] long and 1 [cm] 
wide.  The second test case involved the same dipole on a grounded dielectric slab.  The height of 
the dielectric slab was 19 [cm] and its relative permittivity was 2.55.  Both these cases used fourth 
order interpolation of the Green’s Function. 
 
The final case was an array of 25 25× square conducting patches in free space illuminated by a 
plane wave at 6 GHz incident from a direction perpendicular to the array plane.  The patches were          
11.4 [mm] on a side with a spacing of S1 = S2 = 3.8 [mm] between patches. Each patch was 
meshed using triangles, creating 65 unknowns per patch.  This FAIM method used fifth order 
interpolating polynomials in both planar directions.  
 
Table 1 shows the run times for the exact and FAIM solutions of the three arrays, as well as the 
error in the FAIM solution compared to that of the full moment matrix.  It can be clearly seen that 
the FAIM method offers a dramatic savings in both fill and solve times while maintaining a high 
level of accuracy.  It can also be seen that use of the preconditioner drastically reduces the number 
of iterations needed for a solution, further reducing solution time. 
 
 
 
 
 
 



 
 
 
 

Table 1: Matrix fill and solve times for FAIM and exact method for several structures. 
 

 
Fill Time 
     [s] 

Solve 
Time [s] 

Number 
Iterations 

Average % 
Error 

Dipole in Free Space 608.0 1591.2 309  
   FAIM 4.2 232.0 263 0.20 
   FAIM w/ preconditioner 4.2 7.2 7 0.19 
Dipole on Grounded 
Substrate 4698.6 4297.1 833  
   FAIM 47.1 1132.7 911 0.15 
   FAIM w/ preconditioner 47.6 23.2 17 0.15 
Square Patch in Free Space 4391.8 53612.1 463  
   FAIM 27.7 1100.5 340 0.96 
   FAIM w/ preconditioner 27.0 32.0 9 0.97 

 
 
As indicated in the table, the FAIM method also drastically reduces the memory storage 
requirements.  For example, for the 25 25× square patch array, each patch was discretized using 
N=65 basis function, requiring a storage of N N× =4225 complex numbers for each ,p p′  block 

pp
mnZ ′⎡ ⎤⎣ ⎦  of the impedance matrix. Instead, using FAIM with a fifth order interpolation scheme, we 

need store only 25 Green’s function samples per cell.  For layered media, this number must be 
multiplied by the number of unique dyadic and scalar potential terms used in the mixed potential 
formulation.  FAIM’s storage advantage is further amplified by the fact that if there are M array 
cells in a square array, there are M2 matrix blocks in the complete matrix, while there are only 
about 4M blocks of sampled Green’s function points.  For the 25× 25 array, this means that the 
system matrix for a standard solution must contain about 91.6 10× complex entries, while there are 
only 362.5 10× entries in the sampled Green’s function array.   

 
 
Conclusion 
 
The FAIM method for solving large arrays has been extended to arbitrary array elements, 
including dielectrics and layered material.  The addition of both features fit neatly into the FAIM 
method, requiring only additional Green’s function terms and projections for magnetic currents.  A 
block diagonal preconditioner has been tested and found to greatly improve solve time by reducing 
the number of iterations required by the BiCG solver. 
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